FIF/newburgh4680817.tag
FIF/newburgh4680817.dic
# 1291

Newburgh Court Book: 17 August 1468, f31r

Sort date: 4680817
Location: 323 718 X

y^e bowrow curt off neuburch haldy(n) i(n) y^e {\} chapell off sanc#
#kat(ri)n w^t±i(n) y^e sayde burth {\} haldy(n) be ii wordy me(n) y^t
is to say {\} thomas±rog(er)son~ ande (j)hon~ off ky(n)harde {\} ball(z)eis
off y^e sayde burth y^e xvii day {\} off moneth off august y^e
(z)er(is) off our lord {\} m cccc" & viii (z)er(is) y^e±q^k day y^e sutt(is)
{\} calit y^e curt aff(er)myt y^e absens(s) ar pate\nt y^e±q^k day
(j)hon~±and(er)son~ was i(n) a\mersyment for fawt off ent(ri)s of (j)hon~\heth
ande tyll ent(er) hym~ to y^e next {\} curt ande y^t was gyfy(n) for
dom~ (j)t(em) {\} bow^rth for thomas±cu(n)nygar(e) tyll ent(er) {\} hym~
to y^e nexit curt Y^e±q^k da {=sic=} thomas\rog(er)son~ followit
Stewn~±phylp off a bowr[?] {\} ande he sayde he walde no^t byde
a kn[?]\laug(e) off asyis pot a c(er)tan~ off y^e co(n)s[a][?] {\} y^t
is for±to say also(n)d(er)±methyson {>} mychell {>} {=written below=}
henry~\cham(er) he(n)ry±ky(n)glasy (j)ames±andson~ {=sic=} da[?]\scot (j)hon~±andson~
(j)hon~ of rossy wyl\stob (j)hon~±thomson~ gyff onny off yir w[?]\sospec
personnys tyll thac anwd(er) suffys[?] {\} ma(n) to du# #chak apon~
su(n)day nexit folu[?] {[following[} {\} vi horis i(n) y^e chapell
off sanc# _kat(ri)n & S[?]\wn~±phylp {<WAS<} obylyssyt hym~ to byide
a {\} declaraco(n) off y^e co(n)sall off haw thynis be\twex hym~ ande
thomas±rog(er)son~ {>zH[?] re?[]>} y^e±q^k d[?] {\} {>} {>} {\} dauid±and(er)son
mayd p(ro)testaco(n) y^t y^e sta[?] {[state[} {\} y^t (j)hon~ of rosy
hade was off na wall {\} for±qwhy y^e har(e) kat(ri)n±charp brak y^e
{\} stat laufilly agan~ & y^e {=sic=} mayde p(ro)testac[?] {\} y^t
y^e stat y^t he hayd gyffy(n) to andrw±t[?] {\} sud torn~ hym~ to
na pregytis for y^t {\} was na wall {\\} {~f32r~} y^e±q^k day
Symo(n)±bell mayde p(ro)testato(n) y^t {\} he was nerast har tyll his
&(lt);brud(er)&(lt); &(lt);f&(lt); &(lt);thom[?]&(lt); {\} bell fad(er) andow±bell {=sic=} off y^e±q^k
land(is) y^t {\} alisond(er)±bell has i(n) manteina(n)s & kystan~\bell
{=sic=}